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1. Introduction

Generative models have gained widespread popularity in
recent years due to their ability to generate new data sam-
ples that are similar to a training dataset. These models have
a wide range of applications, including image generation,
language translation, and anomaly detection. At the core of
generative models is the latent space, a lower-dimensional
representation of the input data that captures the underlying
structure and patterns of the data. In this project, we discuss
the paper “Latent Space Oddity: On the curvature of deep
generative models” [2], which aims to shed light on the
geometric structure of latent spaces in generative models
and how it can be leveraged to improve model performance.

The latent space is an essential component of generative
models, as it encodes important information about the data
and how it is being modeled. It allows the network to
generate new samples that are similar to the training data,
but also provides a way to interpolate between different
data points, allowing the model to smoothly transition
between different samples and create a continuous range of
data.

By understanding the geometric structure of the latent
space, we can gain insights into the properties of the
generative model and how it is modeling the data. For
example, we may be able to identify patterns or structures
in the latent space that correspond to particular features or
characteristics of the data. In order to analyze the geometry
of latent spaces, it is useful to consider Riemannian met-
rics, as these spaces are most often curved and Euclidean
geometry is ill-suited to understand their structure. In light
of this, the authors of [2] propose a stochastic Riemannian
metric which helps understand the curvature of latent
spaces and develop more performant models.

The two main contributions of [2] are:

* A new stochastic Riemannian metric in the latent space
of generators.
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* A new variance network for the generator.

This Riemannian metric helps us better understand
latent space structure and improves the performance of
deep generative models, as it captures the geometry (more
specifically the curvature) of latent spaces, which Euclidian
metrics fail to do.

These contributions are very fundamental and based on
theoretical insights rather than specific applications, which
makes the potential applications of this work very broad.
Most learning task which involve handling variables in a
latent space, such as classification or clustering using VAEs,
or image translation with GANSs [5], would benefit from a
more accurate metric to measure distances in latent spaces.

2. Related work

The geometry of latent spaces in generative models has
not been studied extensively, which makes [2] particularly
exciting.

The authors of [9] develop an algorithm for parallel
translation of a tangent vector along a path on the manifold.
They find that the curvature of manifolds learned by genera-
tive models (applied to real images) is nonlinear but close to
zero. They conclude that Euclidean metrics (straight lines)
form a sufficient approximation to geodesics in the latent
space, which is rather contradictory with the findings of our
article [2]. [9] do concede that the dataset of real images
they used was very limited.

In [10], the geometry of latent spaces is linked to the
level of disentanglement in the generative model’s repre-
sentation of the data. Specifically, the authors find that in
more disentangled VAEs, the latent spaces exhibit higher
curvature than in traditional VAEs. [10] also finds that us-
ing Riemannian metrics in the latent space vastly improves
distance measures and interpolation.

[4] independently worked on the same topic as our arti-
cle [2], and proposed a smooth approximation of geodesics



on the data manifold. They focus their experiments on ap-
plications to robotics, specifically path learning.

Finally, [6] study optimal transport [11] in the context
of GANS and show that (1) the discriminator of a GAN
computes the Wasserstein distance via the Kantorovich
potential, and (2) the generator calculates the transportation
map. They use these insights to develop an alternative to
Wasserstein GANs [1].

After this overview of existing research on the geometry
of latent spaces, we present in the following section some
background knowledge required to understand [2].

3. Variational Autoencoders and latent spaces

Variational Autoencoders (VAEs) are a type of genera-
tive model: they can generate new data samples that are
similar to a training dataset. VAEs work by learning a com-
pact, continuous representation of a training dataset in an
encoding space, and then using this representation to gener-
ate new data samples. This is possible thanks to the “mani-
fold hypothesis™, which states that datasets generally lie on
a manifold of lower dimension than the input space.
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Figure 1: Architecture of Variational Autoencoer

The basic structure of a VAE (see figure above 1) consists
of an encoder and a decoder (also called generator). The
encoder takes in data samples and maps them to a lower-
dimensional encoding (latent variables) in the latent space.
The decoder maps these latent variables to the original data
space to reconstruct the original data sample. The latent
space must respect two properties for the VAE’s generation
to be possible : continuity (two points close in the latent
space must not give completely different outputs) and com-
pleteness (a point sampled from a latent space must give
meaningful content).

VAEs are trained by minimizing the reconstruction er-
ror between the original data samples and their reconstruc-
tions, while also maximizing the compactness of the encod-
ing space. The following is the VAE loss function, which is
derived using variational inference:

0%, ¢ = argmax By, .12 [log(pe(z|2))] — KL[gg(2]2)||p(2)]

4. The Riemannian metric

In order to compute meaningful distances in the latent
space of deep generative models, [2] proposes a stochastic
Riemannian metric. The article first introduces a determin-
istic metric. Considering a smooth latent curve 7; : [0, 1] —
Z, we can map it through a function f to compute lengths
in the input space of the VAE. The length of a curve f(~;)
is then equal to:
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Here, M, = JTJ, is a symmetric positive definite
matrix which acts similarly to a Mahalanobis distance mea-
sure. Mahalanobis distance measures the distance between
a point P and a distribution @ [7] . The distance can be
written as : dy(7,Q) = /(T —@)TS~1(Z — ji) with
it = (g1, po, pi3, - - -, i) T the mean of the distribution. If
the generator f is sufficiently smooth, then M., defines a
Riemannian metric.

We must now adapt the metric to stochastic generators
(such as a VAE decoder) defined as follows:

f(2)=pz)+o(z)€e p:(2) =X, 0:2RY

where € ~ N(0, Ip). The theorem below helps develop
the stochastic metric for this model.

Theorem 1: If the functions x and ¢ are at least twice dif-
ferentiable, then the expected metric equals:

M. = By [M:] = (JU)TI + 3)T3 ()

where J#) and J(*) are the Jacobian matrices of y(-) and
o). B

We can thus approximate M, using M. This estimate
is more precise when the data dimensionality D is large.
One advantage of this metric is that no additional learning
is required, it can entirely be derived from an existing
generator.

Theorem 1 can be proven as follows. Firstly, we need to
compute the Jacobian matrix of the generator:
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The new stochastic metric in the latent space is M, =
J1J. : its randomness is due to the random variable . We
can then compute the expected metric :

M. =
M.

Ep(e[M.] = Epo)[(A +B)T(A + B)]
E,([ATA + ATB + BTA + BTB)

Then:
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It becomes clear that E,,)[BTB] = (J (@)13(9) Therefore,
the expectation of the induced Riemannian metric in the la-
tent space by the generator is:

M, = (Jgu))TJgu) + (Jgﬂ'))TJg"’)

which proves Theorem 1! To establish M, as a metric, it
must verify the following properties :

* Non-negativity: The distance between any two points
must be non-negative, i.e., d(p, q) > 0 for all points p
and q on the manifold.

* Identity of indiscernibles: The distance between any
two points is zero if and only if the points are the same,
ie., d(p,q) =0if and only if p = q.

e Symmetry: The distance between two points is the
same in either direction, i.e., d(p, ¢) = d(q, p).

* Triangle inequality: The distance between two points
is no greater than the sum of the distances between in-
termediate points, i.e., d(p,q) < d(p,r) + d(r,q) for
any intermediate point r.

Since M, is a symmetric positive semi-definitie matrix,
it verifies non-negativity, identity of indiscernables, sym-
metry and triangle inequality. Therefore, the Riemannian
distance measure proposed by [2] is indeed a metric.

The pillar of all the derivations in this section is the as-
sumption that the metric tensor changes smoothly, i.e. that
the Jacobians themselves are smooth functions. The authors
of [2] state this can be ensured by using activation functions
in the generator networks that are C? differentiable (tanh(-),
sigmoid(-), and softplus(-)). This does exclude common ac-
tivation functions such as ReLu or Binary Step, which tend
to perform well but cannot be used in the generator if one
intends to use a Riemannian metric in the latent space.

5. Meaningful Variance Functions

Theorem 1 tells us that the Riemannian metric, and thus
the geometry of our generator, depends on both the mean
and variance networks. The variance function is a neural
network, and unfortunately, neural nets tend do extrapolate
very poorly to unseen data. This means that variance
estimates of our generator will be of low quality outside the
support of the training data distribution.

To overcome this, [2] propose to model the precision (in-

verse varince) By (2) = U%(Z) with a model that extrapolates
P

towards 0, so that variance in unseen regions tends to infin-

ity. The chosen model is a Radial Basis Function (RBF)

network [8], defined as follows:

Bo(2) = W -v(2) + ¢, with vg(2) = exp (=2 — cx[3)
2
fork =1, ..., K, with ¢ the parameters of the model. ( is
simply a vector of very small positive constants which guar-
antees we are never dividing by zero. W € RP>*X are the
weights of the network (all positive), ¢, and \j respectively
designate the centres and the bandwih of the K radial basis
functions. Training the above RBF model results in much
more reliable variance estimates for the generator, and thus
more precise estimates of the Riemannian metric.



6. Results of the paper

This part of the paper demonstrate the benefits of using
their variance network along with a Riemannian metric in
the latent space with several experiments:

* Meaningful distances:

Using the MNIST dataset for a clustering task, [2]
compares results obtained under both metrics. The
Riemannian metric performs a lot better (around 90%
accuracy compared to 70% for Euclidean distances)

¢ Interpolations:

Again, when investigating interpolations, the Rieman-
nian metric gives a smoother transition from zeros to
ones (when trained on part of the MNIST dataset).

» Latent probability distributions:

Instead of a classical normal distribution for data sam-
pling in the latent space, we can use the locally adap-
tive normal distribution (LAND distribution) which
benefits from using a Riemannian extension of the Ma-
halanobis distance. The results are again conclusive on
the benefit of using Riemannian distances.

¢« Random walk on the data manifold:

The Riemannian metric also benefits the model in
terms of generation. Indeed, when exploring the la-
tent space with random walk with a Euclidian distance,
the model wonders beyond the data support and thus
generates poor images. With the Riemannian metric,
the randon walk naturally remains in the support of the
data distribution. This can be explained by the pres-
ence of a "barrier variance” when using the enhances
variance network and Riemannian metric.

Overall, these experiments highlight the significant im-
provements resulting from the use of a Riemannian metric
in the latent spaces of deep generative models, as well as a
more accurate variance network.

7. Our Experiments
7.1. Evaluation of the proposed VAE architecture

The VAE architecture used in the codebase of [2] is not
standard. We first sought to evaluate this new architecture’s
performance and compare it to that of a standard VAE. The
proposed architecture is represented in Figure 2 below:
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Figure 2: Diagram of the VAE architecture used in [2]

The encoder has a few common layers but then splits into
two networks, one to predict the mean of the latent space
distributions, and one for the variance. Then, the generator
takes in a sample z from the latent space and tries to predict
the data distribution N (tgec(2), 0aec(2)), where a standard
VAE would simply predict the reconstruction z. This tech-
nique thus assumes that the data follows a Gaussian distri-
bution in the input space. We compare reconstructed images
with that of a standard VAE in Figure 3:

Figure 3: Reconstruction of a shoe from Fashion-MNIST
using (left) a standard VAE, and (right) the VAE architec-
ture of [2]. Both networks have the same depth and layer
widths where possible, as well as the same activation func-
tion, to ensure a fair comparison.

The proposed architecture performs less well on
Fashion-MNIST. The reconstructed samples tend to mix
different classes of clothes (here, a shoe and a shirt). This
effect is reduced when we sample close to the mean of the
decoder distribution N (tgec(2), 0gec(2)). We explain this
lower performance as follows:

e Firstly, as we saw in Dr. Feydy’s “Geometric Data
Analysis” course, the Gaussian assumption for the data
distribution is rather unrealistic, it is very unlikely that
the manifold on which the data lie in the input space
resembles a Gaussian distribution.

» Secondly, most VAEs simply use one network for the
generator, which predicts a reconstruction in the in-
put space from a latent space sample. Here, the VAE
predicts distribution parameters (mean and variance).
Learning distribution parameters is harder than learn-
ing to reconstuct a sample, which probably contributes
negatively to the performance.



* Finally, this is not something we have backed with the-
ory (there is no literature about it), but we believe the
two-network generator could be trained slightly differ-
ently. Presently, the generator networks take in a sam-
ple from the latent space to predict distribution param-
eters in the input space. We believe it might be inter-
esting to experiment with feeding the generator the la-
tent distribution parameters instead of a sample, since
it is not reconstructing a data point but predicting data
distribution parameters.

From a few experiments on the Fashion-MNIST dataset,
we observe that the proposed VAE architecture of [2] is less
performant than a standard VAE.

7.2. Latent space manifolds

In order to test the strengths and weaknesses of the
proposed Riemannian metric (and the reproduciability of
the paper’s original experiments), we decided to conduct
the following experiment. We first train a VAE and apply
the RBF variance network on the Fashion-MNIST dataset,
to then examine the latent space manifold and its curvature.
We chose this dataset as it seemed like the natural next
step (in terms of complexity) after the MNIST dataset used
in the orginal paper. Also, it is still simple enough to run
experiments on our personal computers with a reasonably
sized model.

The VAE architecture used is that proposed in [2], as the
codebase provided to compute manifolds and geodesics is
unfortunately not compatible with other structures. This is
one of the limits of this paper, the provided code is not flex-
ible at all. Further, it is not trivial to adapt the manifold and
geodesic computation to new architectures: the algorithm
used is quite complex, the code is not commented, and the
algorithm is only briefly described in [3].

After training the VAE on Fashion-MNIST, the follow-
ing data manifold is obtained:

Figure 4: Data manifold for Fashion-MNIST. The color-
scale (blue to red) indicates the local curvature of the man-
ifold. The scatter points represent projections of images in
the latent space.

The input data is projected as points on this manifold,
colored by class (red: tops, purple: coats, green: bags,
yellow-green: shoes, sky-blue: trousers). Coloring the data
by class shows us why reconstructed images sometimes
mix classes: classes overlap on the learned data manifold,
so different points of the input space get mapped to the
same region in the latent space. We expect a better model
(with a different architecture, perhaps deeper/wider or
convolutional) to have more distinctively separated classes.

Nonetheless, this manifold still shows very interesting
structure in the botoom left of the image: while the
curvature of the manifold is mostly homogenous on the
support of the data, the area separating the shoe class and
the trouser/tops classes exhibits very high curvature (shown
in red in Figure 4). This can be interpreted as the model’s
understanding that a shoe has very different structure to
trousers, trousers, or tops. This is then traduced by a much
longer geodesic to go from a shoe to a trouser than from
a trouser to a t-shirt. Already, this simple observation
highlights the importance of the proposed Riemannian
metric: it allows to draw semantic meaning from distances
and structure in the latent space.

In this example, a Euclidian distance would fail to cap-
ture how different a shoe is from a trouser vs. a trouser from
a t-shirt. Indeed, ignoring the curvature, taking a straight
line between a shoe from the bottom left and a trouser would
yield a shorter distance than between a trouser and some
t-shirts. This obviously is semantically wrong, highlight-
ing the fact that Euclidian distances are inadequate to de-
scribe latent spaces, and the Riemannian metric proposed
in [2] constitutes a much better description of the low-
dimensional data-manifold.



7.3. Latent space interpolations

To further illustrate the adequacy of the Riemannian met-
ric, we perform the following experience. Taking a point A
from the shoe class and a point B from the trouser class,
we compute the shortest path between A and B using both
Euclidian distance (shown in green in Figure 5) and the Rie-
mannian metric (shown in red).

== Riemannian geodesic
81 === Euclidian distance
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Figure 5: Shortest paths between a shoe and a trouser on
the data manifold using Euclidian distance (green) and a
Riemannian geodesic (red).

On figure 5 we see that the Euclidian path goes straight to
the region of the shoe class which contains the point, while
the geodesic follows a path along the edge of the shoe class,
transitioning more smoothly to the destination. To verify
this, we have performed interpolations in the latent space
(from the trouser to the shoe) under both metrics, and ob-
tained the following images:
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Figure 6: Sample images obtained by interpolating between
a trouser and a shoe in the latent space. The top row contains
the results for the Euclidian distance, while the bottom row
contains results for the Riemannian geodesic.

Figure 6 shows that under both metrics, the interpolation
is dominated by the shoe class (the trouser sdisappear after
3 images). Nonetheless, the transition is smoother under
the Riemannian geodesic. Indeed, it transitions from a
low-top sneaker to an ankle boot to a high-top sneaker,
whereas the Euclidian metric shows a low-top sneaker for
6 of the 8 images and abruptly becomes a high-top sneaker
in the alst image. This is coherent with what was stated
earlier: the Riemnanian geodesic goes along a the edge
of the shoe class (thus exploring more of the shoe class),
while the Euclidian path goes through a data ’void’ and

appears at the desired shoe.

We can summarize the take-aways of these experiments
as follows. On one hand, the Riemmanian metric offers key
insights into the geomtry of latent spaces and without doubt
has the potential to improve generative modelling. On the
other hand, our experiments show that the VAE structure
used by the authors of [2] is suboptimal and hinders the ap-
plicability of this paper. Finally, the codebase of [2] needs
to be packaged more rigourously, as it is not complete (very
little code was available for the expriments we conducted
- only the manifold plotting functions); and its flexibility
should also be improved to accomodate more model archi-
tectures.

8. Limitations of the paper

While this paper provides crucial insights into the geom-
etry of latent spaces and contains detailed theoretical work
backed by experimental results, we indentify a few weak-
nesses in the presented resarch.

* Firstly, while the findings of this paper are intended to
be applicable to all generative models, the theoretical
derivations are tightly linked to the use of a VAE. This
made us wonder if one could find such a neat expres-
sion for the stochastic Riemannian metric in a different
generative model, such as GANs or score-based mod-
els. On the upside, the proposed RBF variance net-
work does seem model-agnostic, so long as the origi-
nal model contains a variance netowrk.

* As observed in our experiments, the proposed VAE ar-
chitecture is non-standard and tends to perform less
well than a standard VAE. We attribute this to an un-
realistic assumption that data is Gaussian distributed,
and to the generator’s two network structure. We also
hypothesize that the VAE training used is not optimal.

* The paper provides a variety of experiments to demon-
strate the superiority of the Riemannian metric over
Euclidian distances, but these all take place on toy
datasets. While the results are conclusive, we believe
it is important to test these methods on more compli-
cated challenges, which will highlight if the method
scales to larger datasets, higher-dimensional data, and
more complicated latent spaces. This is what moti-
vated us to conduct experiments on Fashion-MNIST, a
(slightly) more complicated dataset than MNIST. It is
especially important to test this paper’s contributions
on more complicated problems because of the modifi-
cations of the standard VAE model. As we highlighted
previously, this modified VAE has some issues, which
might cause it to perform worse than a standard VAE
in real-life applications. This would make the research



presented here less useful, as even if the modified VAE
with the Riemannian metric performs as well as the
standard VAE in the end, one should choose the sim-
pler option (Occam’s razor), i.e. use a standard VAE.

* We have not been able to verify this, but the random-
walk experiment described in [2] leads us to be-
lieve that it is possible that the Riemannian metric
sometimes bounds exploration in the latent space too
harshly, which might restrict the diversity of the recon-
structed images. This might be problematic in applica-
tions such as Al in art: we don’t want to be too close to
the training data, and would like to explore the tails of
the data distribution to produce original and ‘creative’
pieces of art.

* Also, we would like to highlight that the smoothness
requirement for the generator is rather vague. There is
no quantitative evaluation of smoothness, and we think
it would be key to have more detailed insights into how
choices of network architecture, activation functions
etc. impact the smoothness of the network. This is
crucial, as the authors state that insufficient smooth-
ness breaks the metric property of the proposed Rie-
mannian metric.

* Finally, and we believe this is the main weakness of the
paper, the research is only partly reproducible, greatly
limiting its applicability. The quality of the codebase
is poor, we summarize its problems as follows. Firtly,
the code is not flexible and can only accomodate one
VAE architecture. Secondly, the code required to re-
produce experiments of the paper is not readily avail-
able: only RBF training and manifold plotting func-
tions are implemented. Thirdly, the code is not docu-
mented at all and is very sparsely commented. This is
a shame, as packaging this code properly could make
the use of Riemannian metrics in latent spaces much
more widespread amongst practicioners.

9. Conclusion

In conclusion, the paper “Latent Space Oddity: On
the curvature of deep generative models” presents a new
stochastic Riemannian metric and variance network to
understand the geometry of latent spaces and to improve
the performance of deep generative models. The proposed
metric allows for more accurate measurement of distances
in latent spaces and can be derived from an existing gen-
erator without additional learning. The proposed variance
network is far more accurate than the standard one, and
correctly extrapolates to infity outside the data support.
The improvements in generative modelling brought by this
research have been confirmed by numerous experiments
conducted by the authors of [2] as well as our personal

experiments.

However, it is important to note that this work has
some limitations. The Riemannian metric proposed in
the paper is based on smoothness assumptions which are
loosely formulated and may not always hold in practice.
Additionally, some of the mathematical derivations and
proposed models/algorithms seem specific to VAEs, and
not universally applicable to all generative models. Finally,
the VAE structure used in this paper is not standard and
seems suboptimal based on our experiments.

An interesting line of research would be to try to
generalise the results of [2] to more generative models, and
not be reliant on a specific VAE architecture. This would
greatly broaden the applicability of the presented work. A
more pragmatic line of future work is to make this piece
of research reproducible. The code needs to be packaged
in a more user-friendly way, and must be reformatted in
order to be more flexible (it must be able to accomodate
more variety in the model architectures) and scalable. This
will make the research in [2] usable by machine learning
practicioners and more applicable to real-world problems.

Despite these limitations, the proposed metric and vari-
ance network offer a promising approach for understanding
and improving the performance of deep generative models.
Understanding the geometric structure of latent spaces can
provide valuable insights into the properties of generative
models and how they model the data. The potential ap-
plications of this work are broad, as it can be applied to
any learning task that involves handling variables in a latent
space.
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