
Automatic Segmentation of Spinal Cord MS Lesions Across Multiple Sites, Contrasts and Vendors
Pierre-Louis Benveniste1,2, Jan Valošek1,2, Michelle Chen1, Nathan Molinier1,2, Lisa Eunyoung Lee3,4, Alexandre Prat5,6, Zachary Vavasour7, Roger Tam7, Anthony Traboulsee8, Shannon Kolind8, Jiwon Oh3,4, Julien Cohen-Adad1,2,9,10

Acknowledgements
This research was supported by the Multiple Sclerosis Canada, Biogen Idec, Brain Canada, and Roche. We acknowledge all study participants as well as CanProCo collaborators. 
Thanks to Nick Guenther and Mathieu Guay-Paquet for helping with dataset management. We acknowledge Monica Stolar for designing the CanProCo logos. Funded by the Canada 
Research Chair in Quantitative Magnetic Resonance Imaging [CRC-2020-00179], the Canadian Institute of Health Research [PJT-190258], the Canada Foundation for Innovation 
[32454, 34824], the Fonds de Recherche du Québec - Santé [322736, 324636], the Natural Sciences and Engineering Research Council of Canada [RGPIN-2019-07244], the Canada 
First Research Excellence Fund (IVADO and TransMedTech), the Courtois NeuroMod project, the Quebec BioImaging Network [5886, 35450], INSPIRED (Spinal Research, UK; Wings 
for Life, Austria; Craig H. Neilsen Foundation, USA), Mila - Tech Transfer Funding Program. Contact: pierre-louis.benveniste@polymtl.ca 
References
[1] Cortese et al., Mult. Scler. 24, 1536–1537 (2018). [2] Gros et al., Neuroimage 184, 901–915 (2019). [3] Oh et al., BMC Neurol. 21, 1–19 (2021). [4] Bédard et al., arXiv:2310.15402 
[eess.IV] (2023). [5] Isensee et al., Nat. Methods 18, 203–211 (2021). [6] De Leener et al., Neuroimage 165, 170–179 (2018). [7] Eden et al., Brain 142, 633–646 (2019). [8] Zecca et al., 
Mult. Scler. 22, 782–791 (2016). [9] Walsh et al., 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS) 463–470 (2023). [10] Kerbrat et al., Brain 143, 
2089–2105 (2020). [11] Gros et al., Med. Image Anal. 71, 102038 (2021).

Results

Discussion & Conclusion

Material & Methods
● 3T MRI data from 5 sites (Calgary, Edmonton, Montréal, Toronto and Vancouver) collected from ongoing Canadian

Prospective Cohort Study to Understand Progression in MS (CanProCo) [3]
● Sagittal phase sensitive inversion recovery (PSIR) (4 sites, 333 participants) and short tau inversion recovery

(STIR) (1 site, 92 participants) images of cervical spinal cord, both at 0.7×0.7×3 mm3, from the baseline session (M0)
● Participants with both M0 and 12-month follow-up (M12) sessions: 158 relapsing-remitting MS (RRMS), 45 primary 

progressive MS (PPMS), and 45 radiologically isolated syndrome (RIS).
Image analysis:
● MS lesions and intervertebral discs were manually segmented on M0 images
● Spinal cord was automatically segmented on M0 images [4] 
● Two nnUNet [5] models (2D and 3D) were trained on STIR and inverted PSIR (multiplied by -1) images from M0 to segment hyper-intense lesions and the spinal cord : 

269/67/89 images for training/validation/testing.
● The models were evaluated against sct_deepseg_lesion [2] and then applied to unseen M12 data. 
● For spatio-temporal lesion distribution: we brought lesion and spinal cord masks to the PAM50 spinal cord template [6] to create lesion probability maps for individual

 phenotypes and across sessions [7].

Introduction
Context:
● Clinical monitoring of spinal cord multiple sclerosis (MS) lesions is relevant for the early 

diagnostics and evaluation of MS progression [1]. 
● Few methods have tackled lesion segmentation in the spinal cord [2].
● Existing spinal cord MS lesion segmentation algorithms only work well for specific MRI 

contrasts but do not generalize well to other, previously unseen, contrasts. 

Objectives:
● Develop a deep learning model for the automatic segmentation of spinal cord and MS 

lesions in PSIR and STIR contrasts images for longitudinal, multi-site and multi-vendor MRI 
data. 

● Demonstrate the utility of the model to map spatio-temporal distribution of MS lesions across 
MS phenotypes.
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Figure 2: Probability maps of lesions in the cervical spinal cord across phenotypes. (A) Baseline (M0) map constructed from manually segmented lesions. (B) Map at 
follow-up (M12) built from the automatic lesion and spinal cord segmentation. The axial view shows an average of the lesion frequency across each vertebral level. The sagittal 
views show an average of the lesion frequency across sagittal slices. The gray matter contour is overlaid on the axial view. RIS = radiologically isolated syndrome, RRMS = 
relapsing-remitting MS, PPMS = primary progressive MS.

Figure 3: Distribution of lesion count per phenotype and time point. Lesion count is 
obtained from manual segmentation (for M0) and from the 2D nnUNet model (for M12). PPMS 
participants show a higher number of lesions relative to RRMS and RIS participants across all 
sessions. RIS = radiologically isolated syndrome, RRMS = relapsing-remitting MS, PPMS = 
primary progressive MS. *p-value < 0.05 (Wilcoxon signed-rank test). 

● Median Dice scores : 0.55 and 0.53 for the 2D and 3D models → similar to SOTA performance for SC MS lesion segmentation [2]. 
● The developed models outperformed sct_deepseg_lesion [2], keeping in mind that sct_deepseg_lesion was trained on different 

contrasts.
● Contrary to a previous longitudinal study showing an increase in lesion count in RRMS [8], our model predicted fewer lesions for M12 

relative to M0. This is likely caused by a relatively low sensitivity of the model to detect lesions (median sensitivity is 0.5). This can be 
explained by: (i) the poorly defined lesions due to the highly anisotropic resolution, (ii) the aggregation of two different MRI contrasts for 
training a single model, and (iii) intra-rater variability in the generation of ground truth lesion masks [9]. 

● Similarly to previous studies [7,10], we found that lesions were more frequently located at C2-C3 and C5 vertebral levels, with a higher 
distribution of lesions in PPMS relative to RRMS and RIS. Further validation of the proposed models is needed to validate their 
performance against M12 manual segmentations. 

Figure 1: Mapping MS lesions in the spinal cord. Generated lesion and spinal cord masks are brought 
to the PAM50 spinal cord template. Registered masks are then summed. Finally, the Lesion Probability 
Map (LPM) is computed by averaging the sum of registered masks. 

Figure 4: Qualitative examples of lesion segmentation in two representative 
subjects. The lesion segmentations results from sct_deepseg_lesion, the 3D 
nnUNet and the 2D nnUNet overlaid on the sagittal and axial views for STIR and 
PSIR contrasts. The left panel shows a lesion at level C3-C4; the right panel shows a 
lesion at level C2-C3.

Conclusion
● An automatic method for MS lesion segmentation from PSIR/STIR images.
● PPMS participants showed a higher number of lesions relative to RRMS and RIS participants 

across all sessions.
● In both the M0 (created from ground truth segmentations) and the M12 (created from predicted 

segmentations) maps, lesions were predominantly located at C2-C3 and C5 vertebral levels. 
Future work:
● Manual segmentation of M12 results to improve our model performance
● Aggregation of more data for increased model generalizability
● Soft-segmentation to encode partial volume and output uncertainty information [11]
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